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Rapid Note

Free energy of closed membrane with anisotropic inclusions
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2 J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

Received 3 August 1998 and Received in final form 3 May 1999

Abstract. Phospholipid membrane forming a closed surface and decorated with anisotropic inclusions is
considered. The inclusions are free to redistribute laterally over the membrane and to orient in the plane of
the membrane according to the local membrane curvature. A phenomenological expression for the energy
of the interaction between an inclusion and local curvature of the surrounding membrane is proposed.
Considering this single-inclusion energy, and assuming thermodynamic equilibrium, the free energy of the
inclusions, and the consistently related lateral and orientational distributions of the inclusions are obtained
using statistical mechanical methods. For a vesicle shape with given surface area, enclosed volume, and
total amount of inclusions, the free energy is in general given in a nonlocal form (i.e. it can not be expressed
as an integral of its area density over the membrane area). The limits of weak and strong orientational
ordering are considered. Specifically, it is shown that in the shape sequence representing the formation of
an exovesicle the effect of the membrane curvature on the orientation of the inclusions may stabilize the
shape where the exovesicle and the cell are connected by a narrow neck.

PACS. 05.70.Np Interface and surface thermodynamics – 87.16.Dg Membranes, bilayers and vesicles

The system considered is composed of a continuum of
phospholipid molecules into which anisotropic laterally
mobile molecules are embedded. It was determined that
embedding a molecule into the membrane may involve sev-
eral kT of energy [1]. Thus it can be expected that the
embedded molecules may considerably influence the mem-
brane free energy and also the equilibrium vesicle shape.
The effect of the embedded molecules on the vesicle shape
was also observed in experiments [2,3].

In previous works, nonuniform lateral distribution of
the embedded molecules was theoretically described by
taking into account the interdependence between the local
membrane curvature and the lateral density of the embed-
ded molecules [4,5], while orientation of the anisotropic
embedded molecules in the local curvature field was stud-
ied [6] by considering the area density of the embedded
molecules to be uniform. In this work we present a con-
sistent description of both, the nonuniform lateral distri-
bution and the orientational ordering of the membrane
constituents.

Below we employ the term inclusion for an entity con-
sisting of the embedded molecule and some lipids that are
significantly distorted due to the presence of the embed-

a e-mail: vera.kralj-iglic@biofiz.mf.uni-lj.si
b Present address: Dept. of Biomedical Engineering, Boston

University, 44 Cummington Street, Boston, MA 02215, USA

ded molecule. It is imagined that there exists a local mem-
brane shape (and orientation) which fits the inclusion. We
will refer to this shape as to the intrinsic shape of the in-
clusion. As the region where the configuration of the lipid
molecules is significantly distorted is small with respect
to the lateral membrane dimensions [7], the inclusions are
for simplicity treated as points.

The energy of the inclusion derives from the mismatch
between the local membrane shape and the intrinsic shape
of the inclusion. By treating the membrane as a continuum
we implicitly take into account that an inclusion of any
shape behaves as a quadrupole in the curvature field. The
local membrane shape is represented by curvatures of all
possible normal cuts of the membrane through the site of
the inclusion. For the energy of the inclusion we propose
a phenomenological expression consisting of two terms,
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where ξ and ξ? are positive interaction constants, C
is the curvature of the normal cut that is for an an-
gle ψ rotated in the principal axes system of the mem-
brane and Cm is the curvature of the normal cut cor-
responding to the intrinsic shape in the same direction.
The first contribution takes into account the differences
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of the curvatures of the normal cuts of the two systems
while the second contribution takes into account the ef-
fect of the difference between the neighbouring curvatures
of the normal cuts of the two systems. The orientation of
the embedded molecules is described by considering that
the membrane principal directions are in general differ-
ent from the principal directions of the intrinsic shape
of the inclusion. The mutual orientation of the two sys-
tems is determined by the angle ω. Then, using the Eu-
ler equations for the curvatures of the respective normal
cuts of the continuum C = C1 cos2 ψ + C2 sin2 ψ and
Cm = C1m cos2(ψ + ω) + C2m sin2(ψ + ω), where C1 and
C2 are the principal curvatures describing the local shape
of the membrane and C1m and C2m are the principal cur-
vatures describing the intrinsic shape of the inclusion, and
performing the necessary integrations, we get
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where C = 1
2 (C1 + C2), Ĉ = 1

2 (C1 − C2), Cm = 1
2 (C1m +

C2m) and Ĉm = 1
2 (C1m − C2m). If Ĉm = 0 the inclusion

is isotropic while if Ĉm 6= 0 the inclusion is anisotropic.
In the previous work [5] the energy E was determined
by one constant. The energy E is now determined by two
independent constants. Analogously, the description of the
continuum at a given site is also given by two independent
constants [8].

To derive the free energy of the inclusions, the mem-
brane is divided into small patches which however contain
large number of molecules. The membrane curvature is
taken to be constant over the patch. Statistical mechan-
ical approach is used. The chosen patch is considered as
a system of a constant area Ap and a constant number
of molecules M which is immersed in a heat bath so that
its temperature T is constant. The molecules in the patch
are explicitly considered to be independent and indistin-
guishable. Assuming that the system is in thermodynamic
equilibrium the canonical partition function of the inclu-

sions in the small patch of the membrane is Q = qM

M! ,
where q is the partition function of an inclusion, taking
into account all possible orientations of the inclusion [6].

The partition function q is q = 1
2π

∫
exp(−E(ω)
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)dω, with

k the Boltzmann constant. In the partition function of the
inclusion the contribution of the orientational states qorient

is distinguished from the contribution of the other states
qc, q = qcqorient,
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The integration in equation (4) over ω yields the modified
Bessel function I0 [6] which in our case has the argument

(ξ+ ξ?)ĈĈm/2kT . Knowing the canonical partition func-
tion of the patch Q, we obtain the Helmholtz free energy
of the patch, F p = −kT lnQ. The Stirling approximation
is used and the area density of the number of molecules
m = M

Ap is introduced. This gives for the area density of
the free energy

F p
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)
+ kTm lnm. (5)

To obtain the free energy of the whole layer Fm the contri-
butions of all the patches are summed, i.e., the integration
over the layer area A is performed Fm =

∫
Fp

Ap dA, where
dA is the area element.

The explicit dependence of the area density m on the
position can be determined by the condition for the free
energy of the layer to be at its minimum in the thermody-
namic equilibrium of the whole system so that δFm = 0.
It is taken into account that the total number of the in-
clusions MT in the layer is fixed,∫

A

mdA = MT. (6)

The above isoparametric problem is reduced to the or-
dinary variational problem by constructing a functional
Fm + λm

∫
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and λm is the Lagrange multiplier. The variation is per-
formed by solving the Euler equation ∂L

∂m
= 0. Deriving

equation (7) with respect to m and taking into account
equation (6) gives
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where qc is given by (3) and mu is defined by muA = MT.
To obtain the equilibrium free energy of the layer the

equilibrium area density (8) is inserted into the expression
(5) and integrated over the area A. Rearranging the terms
yields

Fm = −kTMT ln
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The equilibrium free energy of the inclusions (Eq. (9))
can not be generally expressed as an integral of the area
density of the free energy. We say that the contribution of
the inclusions is a nonlocal one. A change of the local con-
ditions affects the cell shape and the distribution of the
inclusions through the minimization of the free energy of
the whole membrane. The physical origin of this effect is
different from the nonlocal effect of the relative stretch-
ing of the multilayered membranes that can be attributed
only to the systems consisting of two or more layers [9].
The nonlocal effect contained in equation (9) can be at-
tributed to any closed membraneous system (including
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a monolayer). The expression for Fm obtained in [5] is

recovered from equation (9) for Ĉm = 0 and ξ? = 0.
Further, it should be noted that although the inclu-

sions are explicitly treated as independent, their mutual
influence is taken into account through the mean curva-
ture field which in turn depends on the lateral distribution
of the inclusions.

The energy of the decorated membrane is not scale in-
variant (Eq. (9)) as is the case for the bending energy [10].
The inclusions favour a certain packing arrangement that
depends on the absolute values of the principal membrane
curvatures.

For E/kT � 1 and C1, C2 � C1m, C2m in all the
points of the membrane the exponential function in equa-
tion (3), and the logarithmic function as well as the mod-
ified Bessel function in equation (9) can be expanded.
An expansion up to the second order in the principal
membrane curvatures gives the membrane free energy
in terms of two invariants of the local curvature ten-
sor, the trace and the determinant, i.e. the mean cur-
vature (C1 + C2)/2 and the Gaussian curvature C1C2.
The free energy is expressed in the form of the gener-
alized bilayer couple model [11] with renormalized con-
stants: the local, the nonlocal and the Gaussian bending
constants, (kc, kr and kG, respectively), the spontaneous
curvature C0 and the difference between the outer and the
inner membrane layer areas in the unstressed state 4A0,

kc,eff = kc −MTξ
2C

2
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m/32AkT ,

kr,eff = kr + MTξ
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2
m/4AkT , kG,eff = kG + MT(ξ +

ξ?)2Ĉ2
m/16AkT , C0,eff = kc

kc,eff
(C0 + MTξCm/2Akc),

4A0,eff = kr 4A0/kr,eff . The orientational ordering of
the inclusions in this case shifts the shape within the well
known phase diagram of the bilayer couple model [14,10].
It should be noted, however, that this approximation can
be used only for the shapes which nowhere exhibit large
difference between the principal membrane curvatures.

For E/kT ≥ 1 and Ĉ, Ĉm 6= 0 in all the points of the
membrane the limit of strong ordering may be applied.
This gives for the free energy of the inclusions
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In this case the free energy of the inclusions is expressed
by another set of the invariants of the local curvature ten-
sor: the mean curvature C and the curvature deviator |Ĉ|
[12]. We say that in this case the membrane exhibits devi-
atoric properties [13,6]. This approximation can be used
only for the shapes which everywhere exhibit large differ-
ence between the principal membrane curvatures, as for
example thin cylinders and twisted stripes.

In general, a closed shape of a fixed area and volume
could have regions where |Ĉ| is very small and regions
where it is large (as in the budding where the bud is con-
nected to the main body by a narrow neck). The inter-
dependence between the local membrane curvature and

Fig. 1. The relative membrane bending energy wb =
1

16π

∫
(C1 + C2)2dA, the relative free energy of the inclusions

fm = Fm/8πkc, where kc is the membrane isotropic bending
constant, and the sum of the two quantities wb + fm in de-
pendence of the relative average mean curvature of the vesi-

cle
Rsph

2A

∫
(C1 +C2)dA. The energy contributions, the average

mean curvature and the principal curvatures are normalized
with respect to the corresponding quantities of a sphere with
the area A [10]. In the energy of the inclusions the constant
factor is irrelevant. The parameters used in calculation are
MTkT/8πkc = 1, Cm = 0, ĈmRsph = 100, ξ/kTR2

sph = 0.001,

ξ? = ξ, V/(4πR3
sph/3) = 0.95 where Rsph = (A/4π)1/2.

the orientation of the anisotropic inclusions expressed by
the modified Bessel function I0 enables the description
to transform continuously from the limit where the ori-
entational effects are very small and the membrane may
be described as a two dimensional liquid to the regime
where the inclusions are strongly ordered and the devia-
toric properties of the membrane are exhibited.

Previous studies of the equilibrium vesicle shapes
within a given topology [14,10,15] are based on the min-
imization of the membrane bending energy kc

2

∫
(C1 +

C2)2dA at fixed membrane area A and fixed enclosed vol-
ume V . As the form of the free energy of the inclusions
in general differs from the membrane bending energy and
involves also another invariant |Ĉ|, the set of possible solu-
tions of the variational problem would be different. Deriva-
tion of the new differential equations and their solution are
out of scope of this work. However, it is possible to demon-
strate the importance of the deviatoric effect caused by
anisotropic inclusions in a following approximative man-
ner.

We consider axisymmetrical vesicle shapes obtained
by the minimization of the membrane bending energy for
a sequence in which only one daughter vesicle is formed
from a pear shape. Figure 1 shows the membrane bending
energy, the free energy of the inclusions and the mem-
brane free energy which is the sum of the above con-
tributions, in dependence of increasing imposed average
mean curvature. Any shape in the sequence was given
by the values of the principal curvatures for a grid of
points on the surface. The free energy of the inclusions was
integrated numerically taking into account these values.



8 The European Physical Journal B

For calculation of the modified Bessel function I0 we used
the algorithm given in [16]. The values of the model pa-
rameters are obtained as follows. We took MTkT/8πkc =
1, where the number of inclusions MT is of the order of
103 and the membrane bending constant is ' 10−19 J [12];
to estimate the intrinsic anisotropy, we took that the in-
clusion favours a symmetric saddle for which Cm = 0 and
Ĉm = 1/300 Å−1 [6] while Rsph = 6 µm, corresponding
to a giant phospholipid vesicle; the constant of the inter-
action between the inclusion and the surrounding mem-
brane ξ = ξ?, can be estimated by assuming that the
energy cost in distorting a tail of a phospholipid molecule
within the inclusion is approximately equal to the energy
difference corresponding to the tail packing in different
aggregation geometries. Such difference is of the order of
(0.1-0.5)kT per tail of the phospholipid molecule [17]. If
we take that there are ' 10 molecules (20 tails) involved
in the inclusion, the energy of the inclusion could reach
several kT . We calculated that at the mother vesicle (to-
wards the end of the sequence of Fig. 1), CRsph ' 1 while

ĈRsph ' 0. Then, from the above choice of Cm and Ĉm,
and equation (2), we estimated that the interaction con-
stant ξ/kTR2

sph is of the order of 10−3.

The membrane bending energy monotonously in-
creases along the sequence in Figure 1 [15]. The free en-
ergy of the inclusions only slightly decreases as long as the
developing neck is wide. When the neck becomes narrow
the free energy of the inclusions sharply decreases, reaches
a minimum and then increases, as the area involved in
the neck diminishes. If there are less inclusions present, if
their anisotropy is weaker and if the interaction constants
are smaller, the minimum is less pronounced and becomes
eventually unnoticeable (not shown here). It can be de-
duced from the fm curve that for smaller average mean
curvature the inclusions would have a negligible effect on
the shape. However, when the neck becomes narrower, the
inclusions favour the neck. Therefore it is expected that
the equilibrium shapes calculated by including Fm might
be significantly different from the shapes at the end of the
sequence. Nevertheless, the results presented in Figure 1
give insight into the effect of the deviatoric properties of
the inclusions on the stability of the shapes exhibiting
narrow necks and tethers.

An experimental system in which the effect of the in-
clusions can be significant is the erythrocyte in which the
membrane skeleton-bilayer interactions are abolished, so
that the erythrocyte shape is determined by the proper-
ties of the bilayer. This happens e.g. when erythrocytes
are incubated at very high pH values. Recently, tethers
connecting the parent cell and the daughter vesicle were
observed in erythrocytes at these conditions [18]. It can
be speculated that these tethers may be a consequence
of the accumulation and orientational ordering of the
anisotropic membrane embedded proteins in the tether.
Moreover, cylindrical microexovesicles free of membrane
skeleton were observed upon adding a cationic dimeric am-
phiphile to the erythrocyte suspension [3], which could be
interpreted on the basis of the deviatoric properties of the
membrane induced by anisotropic inclusions [19].

We are indebted to A. Iglič and A.A. Boulbitch for helpful
discussions.
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